Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to −2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host.

General information
State: Published
Organisations: Department of Systems Biology, Enzyme and Protein Chemistry, Department of Micro- and Nanotechnology, Center for Biological Sequence Analysis, Molecular Windows, Technical University of Denmark, North Carolina State University, DuPont
Number of pages: 15
Pages: 1361-1375
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Proteomics
Volume: 16
Issue number: 9
ISSN (Print): 1615-9853
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.42 SJR 1.435 SNIP 0.774
Web of Science (2017): Impact factor 3.532
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.85 SJR 1.564 SNIP 0.889
Web of Science (2016): Impact factor 4.041
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.7 SJR 1.48 SNIP 0.969
Web of Science (2015): Impact factor 4.079
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.73 SJR 1.449 SNIP 0.973
Web of Science (2014): Impact factor 3.807
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.88 SJR 1.488 SNIP 0.978
Web of Science (2013): Impact factor 3.973
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1