Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

Eleven environmental relevant chemicals were investigated for their ability to affect adipogenesis in vitro, biomarker release from adipocytes and PPARα and γ activation. We found that butylparaben stimulated adipogenesis in 3T3-L1 adipocytes and increased release of leptin, adiponectin and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPARγ activating chemicals often stimulate adipocyte differentiation although PPARγ activation is neither a requirement nor a guarantee for stimulation. Four out of the eleven chemicals (bisphenol A, mono-ethylhexyl phthalate, butylparaben, PCB 153) caused increased adipogenesis. The release of adipocyte-secreted hormones was sometimes but not always correlated with the effect on adipocyte differentiation. Eight chemicals were able to cause increased leptin release. These findings strengthen the hypothesis that chemicals can interfere with pathways related to obesity development.

General information
State: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark, University of Southern Denmark
Contributors: Taxvig, C., Sørensen, K. D., Boberg, J., Nellemann, C. L., Schelde, A. B., Pedersen, D., Boergesen, M., Mandrup, S., Vinggaard, A. M.
Pages: 106-115
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Molecular and Cellular Endocrinology
Volume: 361
Issue number: 1-2
ISSN (Print): 0303-7207
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.76 SJR 1.629 SNIP 1.103
Web of Science (2017): Impact factor 3.563
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.82 SJR 1.779 SNIP 1.077
Web of Science (2016): Impact factor 3.754
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.22 SJR 2.14 SNIP 1.242
Web of Science (2015): Impact factor 3.859
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.02 SJR 1.963 SNIP 1.273
Web of Science (2014): Impact factor 4.405
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.48 SJR 2.085 SNIP 1.424
Web of Science (2013): Impact factor 4.241
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.13 SJR 1.668 SNIP 1.248
Web of Science (2012): Impact factor 4.039
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.03 SJR 1.794 SNIP 1.191
Web of Science (2011): Impact factor 4.192
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.648 SNIP 1.073
Web of Science (2010): Impact factor 4.119
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.603 SNIP 1.167
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.556 SNIP 1.016
Scopus rating (2007): SJR 1.425 SNIP 0.941
Scopus rating (2006): SJR 1.418 SNIP 0.884
Scopus rating (2005): SJR 1.431 SNIP 0.946
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.304 SNIP 0.903
Scopus rating (2003): SJR 1.119 SNIP 0.817
Scopus rating (2002): SJR 1.279 SNIP 0.742
Scopus rating (2001): SJR 1.05 SNIP 0.708
Scopus rating (2000): SJR 1.225 SNIP 0.687
Scopus rating (1999): SJR 1.211 SNIP 0.681
Original language: English
Keywords: Adipogenesis, Endocrine disrupting chemicals, Leptin, Adiponectin, PPAR, 3T3-L1 cells
DOIs: 10.1016/j.mce.2012.03.021
Source: dtu
Source-ID: n:oai:DTIC-ART:elsevier/367383050::20948
Research output: Research - peer-review • Journal article – Annual report year: 2012