Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.) - DTU Orbit (08/04/2017)

Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.) are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25 % lupin kernel meal, two diets based on 25 % lupin kernel meal with different levels of added soya saponins, and one diet containing 25 % defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25 % defatted soyabean meal displayed severe enteritis, whereas fish fed 25 % lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25 % defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

General information
State: Published
Organisations: Department of Systems Biology
Pages: 120-129
Publication date: 2008
Main Research Area: Technical/natural sciences

Publication information
Journal: British Journal of Nutrition
Volume: 100
Issue number: 1
ISSN (Print): 0007-1145
Ratings:
BFI (2017): BFI-level 1
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.451 SNIP 1.323
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.444 SNIP 1.265
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.653 SNIP 2.494
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.191 SNIP 2.491
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.007 SNIP 1.662
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.196 SNIP 1.286
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.602 SNIP 0.578
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.951 SNIP 1.222
Scopus rating (2007): SJR 0.932 SNIP 1.197
Scopus rating (2006): SJR 0.703 SNIP 0.931
Scopus rating (2005): SJR 0.509 SNIP 1.181
Scopus rating (2004): SJR 0.618 SNIP 1.07
enteritis, diarrhoea, saponins, barrier function

DOIs:
10.1017/S0007114507886338

Source: orbit
Source-ID: 236249
Publication: Research - peer-review › Journal article – Annual report year: 2008