Dietary exposure to essential and potentially toxic elements for the population of Hanoi, Vietnam.

Knowledge of the dietary intake of essential and toxic elements in fast-developing Southeast Asian countries such as Vietnam is limited. Iron and Zn deficiency in Asia is a well-known problem and is partly due to rice constituting a major part of the diet. Dietary habits are changing and there is a need to build more knowledge so that authorities can give dietary recommendations. The aim of this study was to determine the total dietary intake of essential and potentially toxic elements and to assess the nutritional quality and food safety risks of the average Hanoi diet. 22 foods or food groups were identified and 14 samples of each food group were collected from markets and/or supermarkets in the period 2007-2009. Water spinach, water dropwort, watercress, water mimosa and pond fish are typically produced in wastewater-fed systems. Therefore, these samples were collected both at markets and from wastewater-fed production systems. The results showed little or no risk of toxic elements from the Hanoi diet in general. Further, element contributions from wastewater-fed products were low and does not seem to constitute a problem with respect to potentially toxic elements. A comparison of the average Hanoi dietary intake of essential elements to required intakes shows that the Hanoi diet is sufficient in most elements. However, the diet may be insufficient in Ca, Cr, Fe, K and possibly Zn for which dietary diversification of biofortification might provide solutions.

General information
State: Published
Organisations: National Food Institute, Division of Food Chemistry, University of Copenhagen
Contributors: Marcussen, H., Jensen, B. H., Petersen, A., Holm, P. E.
Pages: 300-311
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Asia Pacific Journal of Clinical Nutrition
Volume: 22
Issue number: 2
ISSN (Print): 0964-7058
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.6 SJR 0.697 SNIP 0.732
Web of Science (2017): Impact factor 1.335
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.71 SJR 0.742 SNIP 0.741
Web of Science (2016): Impact factor 1.816
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.68 SJR 0.713 SNIP 0.906
Web of Science (2015): Impact factor 1.35
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.83 SJR 0.88 SNIP 0.911
Web of Science (2014): Impact factor 1.699
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.75 SJR 0.756 SNIP 0.812
Web of Science (2013): Impact factor 1.36
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.22 SJR 0.488 SNIP 0.601
Web of Science (2012): Impact factor 1.055
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.7 SJR 0.641 SNIP 0.88
Web of Science (2011): Impact factor 1.133
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.595 SNIP 0.795
Web of Science (2010): Impact factor 1.438
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.538 SNIP 0.62
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.415 SNIP 0.543
Scopus rating (2007): SJR 0.378 SNIP 0.71
Scopus rating (2006): SJR 0.422 SNIP 0.655
Scopus rating (2005): SJR 0.296 SNIP 0.407
Scopus rating (2004): SJR 0.313 SNIP 0.409
Scopus rating (2003): SJR 0.206 SNIP 0.188
Scopus rating (2002): SJR 0.188 SNIP 0.234
Scopus rating (2001): SJR 0.157 SNIP 0.133
Scopus rating (2000): SJR 0.219 SNIP 0.402
Scopus rating (1999): SJR 0.227 SNIP 0.35

Original language: English
Keywords: Elements, Fish, Food safety, Intake, Vegetables specific, Vietnam
Source: dtu
Source-ID: n:oai:DTIC-ART:fsta/386781416::32115
Research output: Research - peer-review > Journal article – Annual report year: 2013