Dietary cinnamaldehyde enhances acquisition of specific antibodies following helminth infection in pigs - DTU Orbit (08/12/2018)

Dietary cinnamaldehyde enhances acquisition of specific antibodies following helminth infection in pigs

Dietary phytonutrients such as cinnamaldehyde (CA) may contribute to immune function during pathogen infections, and CA has been reported to have positive effects on gut health when used as feed additive for livestock. Here, we investigated whether CA could enhance antibody production and specific immune responses during infection with an enteric pathogen. We examined the effect of dietary CA on plasma antibody levels in parasite-naïve pigs, and subsequently acquisition of humoral immune responses during infection with the parasitic nematode Ascaris suum. Parasite-naïve pigs fed diets supplemented with CA had higher levels of total IgA and IgG in plasma, and A. suum-infected pigs fed CA had higher levels of parasite-specific IgM and IgA in plasma 14 days post-infection. Moreover, dietary CA increased expression of genes encoding the B-cell marker CD19, sodium/glucose co-transporter1 (SLC5A1) and glucose transporter 2 (SLC2A2) in the jejunal mucosa of A. suum-infected pigs. Dietary CA induced only limited changes in the composition of the prokaryotic gut microbiota of A. suum-infected pigs, and in vitro experiments showed that CA did not directly induce proliferation or increase secretion of IgG and IgA from lymphocytes. Our results demonstrate that dietary CA can significantly enhance acquisition of specific immune responses in pigs. The underlying mechanism remains obscure, but apparently does not derive simply from direct contact between CA and host lymphocytes and appears to be independent of the gut microbiota.

General information
State: Published
Organisations: National Veterinary Institute, Innate Immunology, University of Copenhagen
Pages: 43-52
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Veterinary Immunology and Immunopathology
Volume: 189
ISSN (Print): 0165-2427
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.7 SJR 0.68 SNIP 0.71
Web of Science (2017): Impact factor 1.632
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.63 SJR 0.742 SNIP 0.708
Web of Science (2016): Impact factor 1.718
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.67 SJR 0.862 SNIP 0.749
Web of Science (2015): Impact factor 1.664
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.6 SJR 0.777 SNIP 0.718
Web of Science (2014): Impact factor 1.535
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.89 SJR 0.834 SNIP 0.797
Web of Science (2013): Impact factor 1.748
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.15 SJR 0.841 SNIP 0.913
Web of Science (2012): Impact factor 1.877
ISI indexed (2012): ISI indexed yes