Devitrification and high temperature properties of mineral wool

Mineral wool products can be used for thermal and acoustic insulation as well as for fire protection. The high temperature properties and the crystallization behaviour (devitrification) of the amorphous fibres during heating have been examined. Commercial stone wool and commercial hybrid wool (stone wool produced by a glass wool process) have been compared, as well as specially produced stone wool fibres. The fibres differed in chemical compositions and degree of oxidation given by Fe3+/Fetotal ratios. The materials were studied by thermal stability tests, X-ray diffraction, Mössbauer spectroscopy, secondary neutral mass spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. When stone wool fibres were heated at 800 °C in air, oxidation of Fe2+ to Fe3+ occurred simultaneously with migration of divalent cations (especially Mg2+) to the surface. Decreasing Fe3+/Fetotal ratios resulted in increasing migration and improved thermal stability. The cations formed a surface layer mainly consisting of MgO. When heated to above 800 °C, bulk crystallization of the fibres took place with diopside and nepheline as the main crystalline phases. Commercial stone wool and the specially made fibres were considerably more temperature stable than the commercial hybrid wool. Commercial hybrid wool has a high Fe3+/Fetotal ratio of 65% resulting in less migration of cations during heat treatment.

General information
State: Published
Organisations: X-ray Crystallography, Department of Chemistry, Rockwool International
Contributors: Nielsen, E. R., Augustesen, M., Ståhl, K.
Pages: 1255-1260
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Materials Science Forum
Volume: 558-559
Issue number: part 2
ISSN (Print): 0255-5476
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.3 SJR 0.18 SNIP 0.317
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.28 SJR 0.188 SNIP 0.302
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.29 SJR 0.218 SNIP 0.326
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.33 SJR 0.261 SNIP 0.414
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.28 SJR 0.238 SNIP 0.338
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.34 SJR 0.279 SNIP 0.467
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.33 SJR 0.248 SNIP 0.415
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.273 SNIP 0.406
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.343 SNIP 0.389
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.298 SNIP 0.358