Development of a web tool for Escherichia coli subtyping based on fimH alleles - DTU Orbit
(31/03/2019)

Development of a web tool for Escherichia coli subtyping based on fimH alleles: Running title: Development of E. coli fimH sub-typing web-tool

The aim of this study was to construct a valid publicly available method for in silico fimH sub-typing of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multi-locus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available on https://bitbucket.org/genomicepidemiology/fimtyper, the database freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software available at https://cge.cbs.dtu.dk/services/FimTyper

FimTyper was validated on three datasets; (i) containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study, (ii) whole-genome sequence data of 243 third-generation cephalosporins-resistant E. coli isolates, and (iii) a randomly chosen subset of 40 E. coli isolates from dataset (ii), which were subjected to conventional fimH sub-typing. The combination of the three datasets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 40 fimH sub-types from the Sanger sequences from dataset (i), and successfully analyzed all 243 drafted genomes from dataset (ii). FimTyper sub-typing of the Sanger sequences and WGS data from dataset (iii) were in complete agreement. Additionally, fimH sub-typing was evaluated on a phylogenetic network of 122 ST131 E. coli isolates. There were perfect concordance between the typology and fimH-based sub-clones within ST131 with accurate identification of the pandemic multidrug resistant clonal subgroup ST131-H30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH sub-typing, highly suitable for surveillance and outbreak detection.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Genomic Epidemiology, Statens Serum Institut, University of Washington
Pages: 2538-2543
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Clinical Microbiology
Volume: 55
Issue number: 8
ISSN (Print): 0095-1137
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.55 SJR 2.256 SNIP 1.443
Web of Science (2017): Impact factor 4.054
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.57 SJR 2.196 SNIP 1.4
Web of Science (2016): Impact factor 3.712
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.56 SJR 2.206 SNIP 1.431
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.84 SJR 2.231 SNIP 1.528
Web of Science (2014): Impact factor 3.993
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.18 SJR 2.438 SNIP 1.63
Web of Science (2013): Impact factor 4.232
Keywords: FimH, E. coli, Typing, Whole genome sequencing analysis

Electronic versions:
J._Clin._Microbiol._2017_Roer_2538_43.pdf

DOIs:
10.1128/JCM.00737-17

Source: FindIt
Source-ID: 2371255433

Research output: Research - peer-review > Journal article – Annual report year: 2017