Development of a novel rotary magnetic refrigerator

A novel rotary magnetic refrigerator was designed and built at the Federal University of Santa Catarina (UFSC). The optimized magnetic circuit is a two-pole system in a rotor-stator configuration with high flux density regions of approximately 1 T. Eight pairs of stationary regenerator beds filled with approximately 1.7 kg of gadolinium spheres (425-600 μm diameter) were placed in the magnetic gap. Two low-friction rotary valves were developed to synchronize the hydraulic and magnetic cycles. The valves were positioned at the hot end to avoid heat generation in the cold end. In this work, experimental results are presented as a function of the operating frequency, fluid flow rate, hot reservoir temperature and thermal load. The performance of the device was evaluated in terms of the coefficient of performance (COP) and overall second-law efficiency (η_{2nd}). The maximum no-load temperature span was 12 K at 1.5 Hz and 150 L h$^{-1}$, and the maximum zero-span cooling power was 150 W at 0.8 Hz and 200 L h$^{-1}$. For a thermal load of 80.4 W, at 0.8 Hz and 200 L h$^{-1}$, the device generated a temperature span of 7.1 K, with a COP of 0.54 and η_{2nd} of 1.16%.
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.2 SJR 1.272 SNIP 2.129
Web of Science (2011): Impact factor 1.817
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.355 SNIP 1.789
Web of Science (2010): Impact factor 1.439
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.565 SNIP 1.972
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.282 SNIP 1.734
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.848 SNIP 1.629
Scopus rating (2006): SJR 1.497 SNIP 1.643
Scopus rating (2005): SJR 1.384 SNIP 1.682
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.174 SNIP 1.916
Scopus rating (2003): SJR 1.222 SNIP 1.507
Scopus rating (2002): SJR 1.642 SNIP 1.809
Scopus rating (2001): SJR 1.9 SNIP 1.869
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.816 SNIP 1.314
Scopus rating (1999): SJR 0.809 SNIP 1.214
Original language: English
Keywords: Coefficient of performance, Gadolinium, Magnetic refrigeration, Magnetocaloric effect, Permanent magnet, Regenerator
DOIs:
10.1016/j.ijrefrig.2016.04.005
Source: FindIt
Source-ID: 2304277805
Research output: Research - peer-review › Journal article – Annual report year: 2016