Development and metrological validation of a new automated scanner system for freeform measurements on wind turbine blades in the production

Development and metrological validation of a new automated scanner system for freeform measurements on wind turbine blades in the production

Geometrical defects on the surface of wind turbine blades can severely degrade the blade during operation and lead to reduced lift, which in turn reduces the power output of the turbine. This paper presents an automated surface geometry inspection system, which is designed based on manufacturing requirements. Estimating the measurement uncertainty and establishing traceability is difficult for huge, freeform objects. An approach based on the Modular Freeform Gauge (MFG) method is presented and used to estimate the measurement uncertainty of the system. An expanded measurement uncertainty of 665 μm (k=2) was established for the system and verified by measurements on a 55 meter long blade.

General information
Publication status: Published
Organisations: Dynamical systems, Department of Mechanical Engineering, Manufacturing Engineering, Image Analysis & Computer Graphics, Department of Applied Mathematics and Computer Science, Siemens Gamesa Renewable Energy
Pages: 255-266
Publication date: 1 Mar 2019
Peer-reviewed: Yes

Publication information
Journal: Precision Engineering
Volume: 56
ISSN (Print): 0141-6359
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: 3D measurement, Freeform surface metrology, ISO 15530-3, Large object metrology, Modular freeform gauge, Wind turbine blade
DOI's:
Source: Scopus
Source-ID: 85059486149
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review