Deterministic phase measurements exhibiting super-sensitivity and super-resolution - DTU Orbit (18/11/2018)

Deterministic phase measurements exhibiting super-sensitivity and super-resolution

Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two features can be simultaneously achieved using a relatively simple setup based on Gaussian states and homodyne measurement. Using 430 photons shared between a coherent and a squeezed vacuum state, we demonstrate a 22-fold improvement in the phase resolution, while we observe a 1.7-fold improvement in the sensitivity. In contrast to previous demonstrations of super-resolution and super-sensitivity, this approach is fully deterministic.

General information
State: Published
Organisations: Department of Physics, Quantum Physics and Information Technology, Palacký University Olomouc
Contributors: Schäfermeier, C., Ježek, M., Madsen, L. S., Gehring, T., Andersen, U. L.
Pages: 60-64
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Optica
Volume: 5
Issue number: 1
ISSN (Print): 2334-2536
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 9.05
Web of Science (2017): Impact factor 7.536
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 8.05
Web of Science (2016): Impact factor 7.727
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 7
Web of Science (2015): Impact factor 5.205
Web of Science (2015): Indexed yes
Web of Science (2014): Indexed yes
Original language: English
Electronic versions:
Untitled.pdf
DOIs:
10.1364/OPTICA.5.000060
Source: FindIt
Source-ID: 2395522039
Research output: Research - peer-review > Journal article – Annual report year: 2018