Determining the extent of groundwater interference on the performance of infiltration trenches - DTU Orbit (26/01/2019)

Determining the extent of groundwater interference on the performance of infiltration trenches

Infiltration trenches are widely used in stormwater management, but their capacity decreases when installed in areas with shallow groundwater where infiltration is limited by groundwater drainage. Here the hydrological performance of single infiltration trenches in areas with shallow water tables is quantified in terms of their capability to reduce peak flow, peak volume and annual stormwater runoff volume. To simulate the long term hydrological performance of infiltration trenches two different models are employed. The models continuously simulate infiltration rates from infiltration trenches using a 19-year rainfall time series from Copenhagen as input. The annual and single event stormwater runoff reduction from infiltration trenches was determined for 9 different scenarios that covered different soil conditions and infiltration trench dimensions. Monte Carlo simulations were used in order to quantify the impact of parameter variability for each scenario. Statistical analysis of the continuous long term model simulations was used to quantify the hydrological performance of infiltration trenches. Results show that infiltration trenches are affected by groundwater when there is an unsaturated depth of less than 1.5-3. m in sandy loam, 6.5-8. m in silt loam and 11-12. m in silty clay loam. A correction factor that can be applied for infiltration trench design when there is a shallow groundwater table is presented. The analyses showed that below a certain value of unsaturated depth the dissipation capacity of the mound/groundwater becomes the dominant process determining the infiltration capacity from infiltration trenches. In these cases it is essential to consider the local groundwater conditions in the infiltration trench design process.

General information
State: Published
Contributors: Locatelli, L., Mark, O., Mikkelsen, P. S., Ambjerg-Nielsen, K., Wong, T., Binning, P. J.
Number of pages: 13
Pages: 1360-1372
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Hydrology
Volume: 529
ISSN (Print): 0022-1694
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.06 SJR 1.832 SNIP 1.71
Web of Science (2017): Impact factor 3.727
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.89 SJR 1.813 SNIP 1.772
Web of Science (2016): Impact factor 3.483
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.54 SJR 1.686 SNIP 1.761
Web of Science (2015): Impact factor 3.043
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.45 SJR 1.667 SNIP 1.993
Web of Science (2014): Impact factor 3.053
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.36 SJR 1.714 SNIP 1.974
Web of Science (2013): Impact factor 2.693
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.38 SJR 1.914 SNIP 1.994
Web of Science (2012): Impact factor 2.964
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.16 SJR 1.742 SNIP 1.833
Web of Science (2011): Impact factor 2.656
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.786 SNIP 1.712
Web of Science (2010): Impact factor 2.514
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.017 SNIP 1.849
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.945 SNIP 1.744
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.863 SNIP 1.956
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.72 SNIP 2.298
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.608 SNIP 1.841
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.567 SNIP 1.746
Scopus rating (2003): SJR 1.449 SNIP 1.758
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.453 SNIP 1.604
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.477 SNIP 1.375
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.494 SNIP 1.29
Scopus rating (1999): SJR 1.324 SNIP 1.4

Original language: English
Keywords: Water Science and Technology, Groundwater interference, Infiltration trenches, Modelling, Soakaways, Stormwater runoff, Water sensitive urban design, Groundwater, Intelligent systems, Models, Monte Carlo methods, Runoff, Silt, Storm sewers, Storms, Groundwater conditions, Infiltration capacity, Parameter variability, Shallow groundwater tables, Storm water runoff, Storm-water managements, Water sensitive urban designs, Infiltration

Electronic versions:

DOIs:
10.1016/j.jhydrol.2015.08.047
Source: FindIt
Source-ID: 2281151780
Research output: Research - peer-review › Journal article – Annual report year: 2015