Determination of the J integral for laminated double cantilever beam specimens: The curvature approach - DTU Orbit (22/12/2018)

Determination of the J integral for laminated double cantilever beam specimens: The curvature approach

A new approach is proposed for measuring the J integral (and thus the fracture resistance) of interface cracks in multiply laminates. With this approach the J integral is found from beam curvatures and applied moments. Knowledge of ply layup and stiffness is not required. In order to test the accuracy of the proposed approach, double cantilever beam specimen loaded with uneven bending moments (DCB-UBM) specimens were tested and analysed using the curvature approach and a method based on laminate beam theory. Beam curvatures were determined using a configuration of strain gauges. Good agreement was obtained between the two approaches. © 2012 Elsevier Ltd. All rights reserved.

General information
- **State:** Published
- **Organisations:** Department of Wind Energy, Composites Mechanics and Materials Mechanics
- **Contributors:** Rask, M., Sørensen, B. F.
- **Pages:** 37-48
- **Publication date:** 2012
- **Peer-reviewed:** Yes

Publication information
- **Journal:** Engineering Fracture Mechanics
- **Volume:** 96
- **ISSN (Print):** 0013-7944
- **Ratings:**
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 2.8 SJR 1.244 SNIP 1.733
 - Web of Science (2017): Impact factor 2.58
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 2.39 SJR 1.262 SNIP 1.749
 - Web of Science (2016): Impact factor 2.151
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 2.44 SJR 1.334 SNIP 1.888
 - Web of Science (2015): Impact factor 2.024
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 2.28 SJR 1.561 SNIP 2.134
 - Web of Science (2014): Impact factor 1.767
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 2.25 SJR 1.426 SNIP 1.986
 - Web of Science (2013): Impact factor 1.662
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 1.82 SJR 1.329 SNIP 2.081
 - Web of Science (2012): Impact factor 1.413
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 2
 - Scopus rating (2011): CiteScore 1.92 SJR 1.718 SNIP 2.233
 - Web of Science (2011): Impact factor 1.353
 - ISI indexed (2011): ISI indexed yes
 - Web of Science (2011): Indexed yes
 - BFI (2010): BFI-level 2