Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite - DTU Orbit (18/01/2019)

Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded austenite.

General information

State: Published
Organisations: Materials and Surface Engineering, Department of Mechanical Engineering
Contributors: Christiansen, T., Somers, M. A. J.
Pages: 999-1005
Publication date: 2008
Peer-reviewed: Yes

Publication information

Journal: International Journal of Materials Research
Volume: 99
Issue number: 9
ISSN (Print): 1862-5282
Ratings:
 - BFI (2019): BFI-level 1
 - Web of Science (2019): Indexed yes
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 0.75 SJR 0.318 SNIP 0.52
 - Web of Science (2017): Impact factor 0.748
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 0.6 SJR 0.288 SNIP 0.533
 - Web of Science (2016): Impact factor 0.681
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 0.65 SJR 0.339 SNIP 0.556
 - Web of Science (2015): Impact factor 0.687
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 0.68 SJR 0.463 SNIP 0.579
 - Web of Science (2014): Impact factor 0.639
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 0.63 SJR 0.414 SNIP 0.572
 - Web of Science (2013): Impact factor 0.675
 - ISI indexed (2013): ISI indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 0.72 SJR 0.525 SNIP 0.648
 - Web of Science (2012): Impact factor 0.691
 - ISI indexed (2012): ISI indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): CiteScore 0.82 SJR 0.504 SNIP 0.592
 - Web of Science (2011): Impact factor 0.83
 - ISI indexed (2011): ISI indexed yes
 - Web of Science (2011): Indexed yes
 - BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.514 SNIP 0.529
Web of Science (2010): Impact factor 0.86
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.382 SNIP 0.361
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.503 SNIP 0.465
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.509 SNIP 0.557
Scopus rating (2006): SJR 0.754 SNIP 0.853
Scopus rating (2005): SJR 0.364 SNIP 0.829
Scopus rating (2004): SJR 0.485 SNIP 0.866
Scopus rating (2003): SJR 0.295 SNIP 0.96
Scopus rating (2002): SJR 0.754 SNIP 1.043
Scopus rating (2001): SJR 0.665 SNIP 0.965
Scopus rating (2000): SJR 0.519 SNIP 1.122
Scopus rating (1999): SJR 0.545 SNIP 1.144
Original language: English
DOIs:
10.3139/146.101729
Source: orbit
Source-ID: 233530
Research output: Research - peer-review › Journal article – Annual report year: 2008