Determination of Optimal Energy Efficient Separation Schemes based on Driving Forces -
DTU Orbit (07/04/2019)

Determination of Optimal Energy Efficient Separation Schemes based on Driving Forces
A new integrated approach for synthesis, design and operation of separation schemes is presented. This integrated
approach is based on driving forces that promote the desired separation for different separation techniques. A set of
algorithms needed by the integrated approach for sequencing and design of distillation columns and for generating hybrid
separation schemes are presented. The main feature of these algorithms is that they provide a 'visual' solution that also
appears to be near optimal in terms of energy consumption. Several illustrative examples highlighting the application of
the integrated approach are also presented. (C) 2000 Elsevier Science Ltd. All rights reserved.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering
Contributors: Bek-Pedersen, E., Gani, R., Levaux, O.
Pages: 253-259
Publication date: 2000
Peer-reviewed: Yes

Publication information
Journal: Computers & Chemical Engineering
Volume: 24
Issue number: 2-7
ISSN (Print): 0098-1354
Ratings:
Scopus rating (2000): SJR 1.125 SNIP 1.054
Web of Science (2000): Indexed yes
Original language: English
DOIs:
10.1016/S0098-1354(00)00474-9
Source: orbit
Source-ID: 176834
Research output: Contribution to journal > Journal article – Annual report year: 2000 > Research > peer-review