Detector design for active fault diagnosis in closed-loop systems

Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second, an optimal detector design is presented for single and multiple faults using the amplitude and phase shift of the residual signal to conduct diagnosis. Here, both the optimal case of a perfect model and the suboptimal case of a model with uncertainties are discussed. The method is successfully tested on a simulated system with parametric faults.

General information
State: Published
Organisations: Department of Electrical Engineering, Automation and Control, Department of Applied Mathematics and Computer Science, Dynamical Systems
Contributors: Sekunda, A. K., Niemann, H. H., Poulsen, N. K.
Number of pages: 18
Publication date: 2018
Peer-reviewed: Yes

Publication information
ISSN (Print): 0890-6327
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.48 SJR 0.915 SNIP 1.162
Web of Science (2017): Impact factor 2.082
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.04 SJR 0.749 SNIP 1.046
Web of Science (2016): Impact factor 1.708
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.69 SJR 1.015 SNIP 1.06
Web of Science (2015): Impact factor 1.368
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.98 SJR 1.157 SNIP 1.328
Web of Science (2014): Impact factor 1.346
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.07 SJR 0.9 SNIP 1.204
Web of Science (2013): Impact factor 1.656
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.84 SJR 0.779 SNIP 1.249
Web of Science (2012): Impact factor 1.219
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.45 SJR 0.834 SNIP 0.962
Web of Science (2011): Impact factor 0.913
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.836 SNIP 1.214
Web of Science (2010): Impact factor 0.729
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.299 SNIP 1.555