Detection of icing on wind turbine blades by means of vibration and power curve analysis - DTU Orbit (31/12/2018)

Detection of icing on wind turbine blades by means of vibration and power curve analysis: Icing detection in wind turbines

Ice accretion on wind turbines' blades is one of the main challenges of systems installed in cold climate locations, resulting in power performance deterioration and excessive nacelle oscillation. In this work, consistent detection of icing events is achieved utilizing indications from the nacelle accelerometers and power performance analysis. Features extracted from these two techniques serve as inputs in a decision-making scheme, allowing early activation of de-icing systems or shut down of the wind turbine. An additional parameter is the month of operation, assuring consistent outcomes in both winter and summer seasons. The amplitude of lateral nacelle vibration at rotor speed is the used condition indicator from vibration standpoint, which is verified by the presence of sinusoidal shape in high-resolution time waveforms. Employment of k-nearest neighbour on wind speed - power production data sets leads to successful recognition of power performance deterioration. Results from one wind park consisting of 13 turbines operating under icing are presented, where similar patterns on both vibration and power curve data validate the effectiveness of the proposed approach on the reliable detection of icing formation

General information
State: Published
Organisations: Department of Management Engineering, Department of Electrical Engineering, Center for Electric Power and Energy, Electric Equipment Technologies, Technical University of Denmark, Brüel and Kjær Sound and Vibration Measurement A/S, University of the Faroe Islands
Pages: 1819–1832
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Wind Energy
Volume: 19
Issue number: 10
ISSN (Print): 1095-4244
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.18 SJR 1.051 SNIP 1.834
Web of Science (2017): Impact factor 2.938
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.37 SJR 1.079 SNIP 2.316
Web of Science (2016): Impact factor 2.725
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.06 SJR 1.201 SNIP 2.165
Web of Science (2015): Impact factor 2.891
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.42 SJR 1.209 SNIP 3.688
Web of Science (2014): Impact factor 3.069
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.75 SJR 1.235 SNIP 2.486
Web of Science (2013): Impact factor 2.556
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.36 SJR 1.062 SNIP 2.297
Web of Science (2012): Impact factor 1.436
ISI indexed (2012): ISI indexed yes