Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integrated in a centrifugal microfluidic platform

In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal microfluidic platform with embedded gold nanopillar substrates. While spinning, the disc platform enables dynamic SERS acquisition of multiple chips, significantly reducing time-to-result and improving the reproducibility of the acquired spectra, reducing the fluctuation by a factor of 2.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Durucan, O., Morelli, L., Schmidt, M. S., Burger, R., Rindzevicius, T., Boisen, A.
Number of pages: 3
Pages: 1831-1833
Publication date: 2015

Host publication information
Title of host publication: 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2015
Publisher: Chemical and Biological Microsystems Society
ISBN (Electronic): 9780979806483
Keywords: Surface Enhanced Raman Spectroscopy (SERS), Dynamic SERS, Centrifugal microfluidics
Source: FindIt
Source-ID: 2342840484
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016