Design principles for nuclease-deficient CRISPR-based transcriptional regulators - DTU Orbit (24/12/2018)

Design principles for nuclease-deficient CRISPR-based transcriptional regulators
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualization, and epigenetic studies of living organisms. In this review the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and gRNA, but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discuss the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Synthetic Biology Tools for Yeast
Contributors: Jensen, M. K.
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Fems Yeast Research
Volume: 18
Issue number: 4
Article number: foy039
ISSN (Print): 1567-1356

Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.91 SJR 1.308 SNIP 0.787
Web of Science (2017): Impact factor 2.609
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 1.254 SNIP 0.855
Web of Science (2016): Impact factor 3.299
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.56 SJR 1.196 SNIP 0.741
Web of Science (2015): Impact factor 2.479
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.37 SJR 1.076 SNIP 0.831
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.5 SJR 1.248 SNIP 0.863
Web of Science (2013): Impact factor 2.436
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.56 SJR 1.192 SNIP 0.841
Web of Science (2012): Impact factor 2.462
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.54 SJR 1.221 SNIP 1.018
Web of Science (2011): Impact factor 2.403
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.043 SNIP 0.92
Web of Science (2010): Impact factor 2.279
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.977 SNIP 0.814
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.456 SNIP 1.02
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.231 SNIP 1.075
Scopus rating (2006): SJR 1.061 SNIP 1.084
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.208 SNIP 1.079
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.116 SNIP 1.205
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.664 SNIP 0.793
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.438 SNIP 0.396
Web of Science (2002): Indexed yes
Web of Science (2001): Indexed yes
Original language: English
Keywords: CRISPR, dCas9, Transcriptional regulation, gRNA, scRNA, dCpf1
Electronic versions:
Design_principles_for_nuclea.pdf
foy039.pdf
DOIs:
10.1093/femsyr/foy039

Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Source: FindIt
Source-ID: 2398825606
Research output: Research - peer-review › Review – Annual report year: 2018