Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and Replication - DTU Orbit (18/02/2019)

Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and Replication

We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes and communications are statically scheduled. Our synthesis approach decides the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors such that multiple transient faults are tolerated and the timing constraints of the application are satisfied. We present several design optimization approaches which are able to find fault-tolerant implementations given a limited amount of resources. The developed algorithms are evaluated using extensive experiments, including a real-life example.

General information

State: Published
Organisations: Embedded Systems Engineering, Department of Informatics and Mathematical Modeling, Linköping University
Contributors: Pop, P., Izosimov, V., Eles, P., Peng, Z.
Pages: 389-402
Publication date: 2009
Peer-reviewed: Yes

Publication information

Journal: IEEE Transactions on Very Large Scale Integration Systems
Volume: 172
Issue number: 3
ISSN (Print): 1063-8210
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.4 SJR 0.447 SNIP 1.56
Web of Science (2017): Impact factor 1.744
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.25 SJR 0.411 SNIP 1.829
Web of Science (2016): Impact factor 1.698
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.47 SJR 0.592 SNIP 2.289
Web of Science (2015): Impact factor 1.245
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.17 SJR 0.552 SNIP 1.887
Web of Science (2014): Impact factor 1.356
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.13 SJR 0.528 SNIP 1.833
Web of Science (2013): Impact factor 1.142
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.07 SJR 0.534 SNIP 1.747
Web of Science (2012): Impact factor 1.218
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.14 SJR 0.557 SNIP 1.575
Web of Science (2011): Impact factor 1.219
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2