Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and Replication

Publication: Research - peer-reviewJournal article – Annual report year: 2009

Documents

DOI

View graph of relations

We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes and communications are statically scheduled. Our synthesis approach decides the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors such that multiple transient faults are tolerated and the timing constraints of the application are satisfied. We present several design optimization approaches which are able to find fault-tolerant implementations given a limited amount of resources. The developed algorithms are evaluated using extensive experiments, including a real-life example.
Original languageEnglish
JournalI E E E Transactions on Very Large Scale Integration Systems
Publication date2009
Volume172
Issue3
Pages389-402
ISSN1063-8210
DOIs
StatePublished

Bibliographical note

Copyright: 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

CitationsWeb of Science® Times Cited: 14
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4067034