Design optimization of offshore wind farms with multiple types of wind turbines - DTU Orbit (15/12/2017)

Design optimization of offshore wind farms with multiple types of wind turbines

Most studies on offshore wind farm design assume a uniform wind farm, which consists of an identical type of wind turbines. In order to further reduce the cost of energy, we investigate the design of non-uniform offshore wind farms, i.e., wind farms with multiple types of wind turbines and hub-heights. Given a set of different types of wind turbines with a different default hub height for each type, we can specify the design of a wind farm by the types of turbines, number of turbines for each type, and turbine locations. We consider the optimization of such design to minimize the levelized cost of energy, which is calculated using a capital cost model that covers the turbine cost and the balance of plant cost. An empirical wind turbine design cost and scaling model is utilized to model the cost of turbines with different sizes. Constraints on wind farm boundary, wind turbine proximity and total capacity are also included. We solve the problem with a newly developed extended random search algorithm and tested it in a realistic design optimization problem based on the Horns Rev 1 offshore wind farm in Denmark. The optimized non-uniform designs are compared with their uniform counterparts. We find that a non-uniform design can achieve a lower levelized cost of energy than its uniform counterparts, when the capital cost per MW is slightly lower for the smaller size turbine. Comparison with the mixed-discrete particle swarm optimization algorithm is also carried out for a non-uniform wind farm design problem with a fixed number of turbines, which shows the effectiveness and superiority of the proposed algorithm. Finally, the advantages and possible disadvantages of non-uniform design are also identified and discussed.

General information
State: Published
Organisations: Department of Wind Energy, Technical University of Denmark, Fluid Mechanics
Authors: Feng, J. (Intern), Shen, W. Z. (Intern)
Pages: 1283-1297
Publication date: 1 Nov 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Energy
Volume: 205
ISSN (Print): 0306-2619
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.058 SNIP 2.573
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.912 SNIP 2.61 CiteScore 6.4
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 3.254 SNIP 3.28 CiteScore 6.93
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 3.164 SNIP 3.377 CiteScore 6.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.854 SNIP 3.108 CiteScore 5.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.473 SNIP 2.84 CiteScore 5.5
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.516 SNIP 2.25
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1