Design of Active Magnetic Bearing Controllers for Rotors Subjected to Gas Seal Forces - DTU Orbit (24/01/2019)

Design of Active Magnetic Bearing Controllers for Rotors Subjected to Gas Seal Forces

Proper design of feedback controllers is crucial for ensuring high performance of Active Magnetic Bearing (AMB) supported rotor dynamic systems. Annular seals in those systems can contribute with significant forces, which, in many cases, are hard to model in advance due to complex geometries of the seal and multiphase fluids. Hence, it can be challenging to design AMB controllers that will guarantee robust performance for these kinds of systems. This paper demonstrates the design, simulation and experimental results of model based controllers for AMB systems, subjected to dynamic seal forces. The controllers are found using H-infinity - and µ synthesis and are based on a global rotor dynamic model in-which the seal coefficients are identified in-situ. The controllers are implemented in a rotor-dynamic test facility with two radial AMBs and one annular seal with an adjustable inlet pressure. The seal is a smooth annular type, with large clearance (worn seal) and with high pre-swirl, which generates significant cross-coupled forces. The H-infinity controller is designed to compensate for the seal forces and the µ controller is furthermore designed to be robust against a range of pressures across the seal. Experimental and simulation results shows that significant performance can be achieved using the model based controllers compared to a reference decentralised Proportional Integral Derivative (PID) controller and robustness against large variations of pressure across the seal can be improved by use of robust synthesised controllers.

General information

State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Lauridsen, J. S., Santos, I. F.
Number of pages: 14
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Journal of Dynamic Systems, Measurement and Control
Volume: 140
Issue number: 9
Article number: 091015
ISSN (Print): 0022-0434
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.74 SJR 0.618 SNIP 1.028
Web of Science (2017): Impact factor 1.521
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.29 SJR 0.526 SNIP 0.88
Web of Science (2016): Impact factor 1.388
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.36 SJR 0.664 SNIP 1.059
Web of Science (2015): Impact factor 0.975
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.38 SJR 0.663 SNIP 1.291
Web of Science (2014): Impact factor 0.978
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.4 SJR 0.741 SNIP 1.344
Web of Science (2013): Impact factor 1.039
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.09 SJR 0.579 SNIP 1.182
Web of Science (2012): Impact factor 0.758
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.96 SJR 0.584 SNIP 1.053
Web of Science (2011): Impact factor 0.802
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.833 SNIP 1.721
Web of Science (2010): Impact factor 0.41
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.763 SNIP 1.494
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.726 SNIP 1.355
Scopus rating (2007): SJR 0.537 SNIP 1.423
Scopus rating (2006): SJR 0.64 SNIP 1.52
Scopus rating (2005): SJR 0.473 SNIP 1.159
Scopus rating (2004): SJR 0.643 SNIP 1.419
Scopus rating (2003): SJR 0.836 SNIP 1.548
Scopus rating (2002): SJR 1.133 SNIP 1.425
Scopus rating (2001): SJR 1.011 SNIP 1.611
Scopus rating (2000): SJR 0.731 SNIP 1.403
Scopus rating (1999): SJR 0.702 SNIP 1.119
Original language: English
DOIs: 10.1115/1.4039665
Source: Findit
Source-ID: 2397698542
Research output: Research - peer-review | Journal article – Annual report year: 2018