Design of a wind turbine pitch angle controller for power system stabilisation

The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine’s step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (c) 2007 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Wind Energy Systems, Wind Energy Division, Risø National Laboratory for Sustainable Energy
Contributors: Jauch, C., Islam, S., Sørensen, P. E., Jensen, B.
Pages: 2334-2349
Publication date: 2007
Peer-reviewed: Yes

Publication Information
Journal: Renewable Energy
Volume: 32
Issue number: 14
ISSN (Print): 0960-1481
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.38 SJR 1.847 SNIP 2.008
Web of Science (2017): Impact factor 4.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.83 SJR 1.661 SNIP 2.05
Web of Science (2016): Impact factor 4.357
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.51 SJR 1.767 SNIP 2.085
Web of Science (2015): Impact factor 3.404
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.51 SJR 1.925 SNIP 2.621
Web of Science (2014): Impact factor 3.476
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.63 SJR 1.989 SNIP 2.719
Web of Science (2013): Impact factor 3.361
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.97 SJR 1.787 SNIP 2.699
Web of Science (2012): Impact factor 2.989
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.9 SJR 1.634 SNIP 2.349
Web of Science (2011): Impact factor 2.978