Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand - DTU Orbit (10/03/2019)

Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing more attention to option since it promises great deal of challenges and opportunities for different rural areas. Thailand rich with higher level of agricultural crops and biomass materials, is a prospective candidate for deployment of bio-power to complement such hybrid systems. To this end, in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can guarantee a continuous 24 hours electricity supply in case of shortage of energy (during on cloudy day and at the nighttime). Two consecutive days of commissioning phase are necessary for the entire system to operate, which is a solid basis for including the syngas generator in the hybrid system. Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing systems can serve as a guideline for making similar studies in the context of different off-grid sites and more. Next, optimal scale up and design of hybrid power system for different off grid applications will be performed including comprehensive uncertainty analysis to facilitate robust and renewable electricity generation.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, King Mongkut's University of Technology North Bangkok
Contributors: Kohsri, S., Meechai, A., Prapainainar, C., Narataraksa, P., Hunpinyo, P., Sin, G.
Pages: 346–361
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Chemical Engineering Research and Design
Volume: 131
ISSN (Print): 0263-8762
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 3.08 SJR 0.847 SNIP 1.381
- Web of Science (2017): Impact factor 2.795
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 2.79 SJR 0.821 SNIP 1.348
- Web of Science (2016): Impact factor 2.538
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 2.7 SJR 0.852 SNIP 1.434
- Web of Science (2015): Impact factor 2.525
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 2.91 SJR 1.022 SNIP 1.671
- Web of Science (2014): Impact factor 2.348
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.56 SJR 0.953 SNIP 1.673
- Web of Science (2013): Impact factor 2.281
- ISI indexed (2013): ISI indexed yes
Original language: English
Keywords: Torrefied rubber wood, Modified downdraft gasifier, Syngas, Internal combustion (IC) engine, Hybrid solar/PV/syngas/battery, System, Thailand
Electronic versions:
Design_and_preliminary_operation_of_a_hybrid_syngas_solar_PV_bATTERY_power_system_for_off_grid_applications_A_case_study_in_Thailand.pdf. Embargo ended: 13/01/2019
DOIs:
10.1016/j.cherd.2018.01.003
Source: FindIt
Source-ID: 2395420717
Research output: Research - peer-review › Journal article – Annual report year: 2018