Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications - DTU Orbit (23/12/2018)

Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications

A balanced PIFA-inspired antenna design is presented for use with the 2.45 GHz ear-to-ear radio channel. The antenna is designed such that the radiated electric fields are primarily polarized normal to the surface of the head, in order to obtain a high on-body path gain (S_{21}). The antenna structure can be made conformal to the outer surface of a hearing instrument, such that the bandwidth of the antenna is optimized given the available volume. The radiation patterns, ear-to-ear path gain and available bandwidth is measured and compared to the simulated results. It is found that the antenna obtains a relatively high ear-to-ear on-body path gain, as well as a bandwidth that is large enough to cover the entire 2.45 GHz ISM band.

General information

State: Published
Organisations: Department of Electrical Engineering, Electromagnetic Systems, GN ReSound A/S
Contributors: Kvist, S. H., Jakobsen, K. B., Thaysen, J.
Pages: 33-37
Publication date: 2012

Host publication information

Title of host publication: 34th Annual Antenna Measurement Techniques Association Symposium 2012
Keywords: Antenna Design, Ear-to-ear, Bandwidth, Bodycentric, Measurement, On-Body, Polarization, WBAN
Electronic versions:
AMTA 2012 2012 Kvist.pdf
Source: dtu
Source-ID: u::5382
Research output: Research - peer-review » Article in proceedings – Annual report year: 2012