Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings - DTU Orbit (13/12/2018)

Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings

The design and construction of an easy-to-use test-rig for permanent magnet couplings is presented. Static torque of permanent magnet couplings as a function of angular displacement is measured through a semi-automated test system. The test-rig is capable of measuring torque up to 240 Nm (in increments of 0.1 Nm) at a angular step of 0.0011 degrees (mechanical). Axial, radial, and angular misalignment can be imposed on the coupling in order to study abnormal and faulty operating conditions. This can also be used to assess installation tolerances. Measured data is stored in a USB thumb-drive, and no additional software or hardware is needed to operate the test-rig. Tests of the aligned static torque performance of two different cylindrical couplings are presented along with radial and axial misalignment-tests of one. The results demonstrates the diversity and usefulness of the designed test-rig. Furthermore, the coupling-performance shows a clear influence of end-effects for axially short couplings, and are found to be very robust to small misalignment.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Sintex A/S
Contributors: Högberg, S., Jensen, B. B., Bendixen, F. B.
Pages: 5664-5670
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Magnetics
Volume: 49
Issue number: 12
ISSN (Print): 0018-9464
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.82 SJR 0.488 SNIP 1.039
Web of Science (2017): Impact factor 1.467
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.51 SJR 0.653 SNIP 0.949
Web of Science (2016): Impact factor 1.243
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.77 SJR 0.575 SNIP 1.21
Web of Science (2015): Impact factor 1.277
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.68 SJR 0.696 SNIP 1.464
Web of Science (2014): Impact factor 1.386
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.75 SJR 0.587 SNIP 1.395
Web of Science (2013): Impact factor 1.213
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.89 SJR 0.769 SNIP 1.55
Web of Science (2012): Impact factor 1.422
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.69 SJR 0.818 SNIP 1.409