Dermal Uptake of Benzophenone-3 from Clothing - DTU Orbit (12/12/2018)

Dermal Uptake of Benzophenone-3 from Clothing

Benzophenone-3 (also known as BP-3 or oxybenzone) is added to sunscreens, plastics, and some coatings to filter UV radiation. The suspected endocrine disruptor BP-3 has been detected in the air and settled dust of homes and is expected to redistribute from its original sources to other indoor compartments, including clothing. Given its physical and chemical properties, we hypothesized that dermal uptake from clothing could contribute to the body burden of this compound. First, cotton shirts were exposed to air at an elevated concentration of BP-3 for 32 days; the final air concentration was 4.4 μg/m³. Next, three participants wore the exposed shirts for 3 h. After 3 h of exposure, participants wore their usual clothing during the collection of urine samples for the next 48 h. Urine was analyzed for BP-3, a metabolite (BP-1), and six other UV filters. The rate of urinary excretion of the sum of BP-1 and BP-3 increased for all participants during and following the 3 h of exposure. The summed mass of BP-1 and BP-3 excreted during the first 24 h attributable to wearing exposed t-shirts were 12, 9.9, and 82μg for participants 1, 2, and 3, respectively. Analysis of these results, coupled with predictions of steady-state models, suggest that dermal uptake of BP-3 from clothing could meaningfully contribute to overall body burden.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Missouri University of Science and Technology, Fraunhofer Wilhelm-Klauditz-Institut (WKI), University of Copenhagen
Number of pages: 9
Pages: 11371-11379
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Technology
Volume: 51
Issue number: 19
ISSN (Print): 0013-936X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.58 SJR 2.535 SNIP 1.941
Web of Science (2017): Impact factor 6.653
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.26 SJR 2.559 SNIP 1.902
Web of Science (2016): Impact factor 6.198
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.61 SJR 2.546 SNIP 1.838
Web of Science (2015): Impact factor 5.393
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.5 SJR 2.777 SNIP 2.003
Web of Science (2014): Impact factor 5.33
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.52 SJR 2.952 SNIP 2.102
Web of Science (2013): Impact factor 5.481
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.17 SJR 3.115 SNIP 2.043
Web of Science (2012): Impact factor 5.257
ISI indexed (2012): ISI indexed yes