Density-functional method for nonequilibrium electron transport

Publication: Research - peer-reviewJournal article – Annual report year: 2002

View graph of relations

We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density-functional theory (DFT) as implemented in the well tested SIESTA approach (which uses nonlocal norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (i) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects.
Original languageEnglish
JournalPhysical Review B (Condensed Matter and Materials Physics)
Publication date2002
Volume65
Issue16
Pages165401
ISSN1098-0121
DOIs
StatePublished

Bibliographical note

Copyright (2002) American Physical Society

CitationsWeb of Science® Times Cited: 1739

Keywords

  • VOLTAGE CHARACTERISTICS, MONATOMIC GOLD WIRES, MECHANICAL-PROPERTIES, ATOMIC-SCALE CONDUCTORS, CARBON NANOTUBES, QUANTIZED CONDUCTANCE, POINT CONTACTS, SCANNING-TUNNELING-MICROSCOPY;, MOLECULAR WIRES, AB-INITIO CALCULATIONS
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4883891