Dendrimers for Vaccine and Immunostimulatory Uses: A Review

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Dendrimers are well-defined (monodisperse) synthetic globular polymers with a range of interesting chemical and biological properties. Chemical properties include the presence of multiple accessible surface functional groups that can be used for coupling biologically relevant molecules and methods that allow for precise heterofunctionalization of surface groups. Biologically, dendrimers are highly biocompatible and have predictable biodistribution and cell membrane interacting characteristics determined by their size and surface charge. Dendrimers have optimal characteristics to fill the need for efficient immunostimulating compounds (adjuvants) that can increase the efficiency of vaccines, as dendrimers can provide molecularly defined multivalent scaffolds to produce highly defined conjugates with small molecule immunostimulators and/or antigens. The review gives an overview on the use of dendrimers as molecularly defined carriers/presenters of small antigens, including constructs that have built-in immunostimulatory (adjuvant) properties, and as stand-alone adjuvants that can be mixed with antigens to provide efficient vaccine formulations. These approaches allow the preparation of molecularly defined vaccines with highly predictable and specific properties and enable knowledge-based vaccine design substituting the traditional empirically based approaches for vaccine development and production.
Original languageEnglish
JournalBioconjugate Chemistry
Publication date2010
Volume21
Issue3
Pages405-418
ISSN1043-1802
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 30
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4389940