Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities - DTU Orbit (21/12/2018)

Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

In this work, the durability of Ni–YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H₂O + 45% CO₂ + 10% H₂) at current density of −1.5 or −2.0 A cm⁻². The cell consists of ∼300 μm Ni–YSZ support, ∼10 μm Ni–YSZ electrode, ∼10 μm YSZ electrolyte and ∼15 μm LSM–YSZ oxygen electrode. The gas conversion was 45% at −1.5 A cm⁻² and 60% at −2.0 A cm⁻², and the operating durations were up to 700 h. The detailed electrochemical analysis revealed significant increase of the ohmic resistance, oxide ion transport resistance in the Ni–YSZ composite electrodes and the electrochemical reaction resistance at the Ni–YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural change in the Ni–YSZ electrode close to the YSZ electrolyte, including the percolation loss of Ni, the contact loss between Ni and YSZ electrolyte and the decomposition of YSZ close to Ni–YSZ|YSZ interface. The electrochemical performance and the microstructure of the oxygen electrode were found to be relatively stable.

General information
State: Published
Organisations: Applied Electrochemistry, Department of Energy Conversion and Storage, Fundamental Electrochemistry
Contributors: Tao, Y., Ebbesen, S. D., Mogensen, M. B.
Number of pages: 11
Pages: 452-462
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Power Sources
Volume: 328
ISSN (Print): 0378-7753
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 7 SJR 2.202 SNIP 1.536
 Web of Science (2017): Impact factor 6.945
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 6.22 SJR 1.944 SNIP 1.5
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 6.34 SJR 1.9 SNIP 1.667
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 6.3 SJR 1.964 SNIP 2.042
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 5.63 SJR 1.975 SNIP 2.137
 Web of Science (2013): Impact factor 5.211
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 5.04 SJR 2.282 SNIP 2.006
 Web of Science (2012): Impact factor 4.675
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 5.13 SJR 2.227 SNIP 2.172