Defect recovery in aluminum irradiated with protons at 20 K

Publication: Research - peer-reviewJournal article – Annual report year: 1987

View graph of relations

Aluminum single crystals have been irradiated with 7.0-MeV protons at 20 K. The irradiation damage and its recovery are studied with positron-lifetime spectroscopy between 20 and 500 K. Stage-I recovery is observed at 40 K. At 240 K, loss of freely migrating vacancies is observed. Hydrogen in vacancies is found to stabilize the vacancies and prolong stage III to above 280 K, where the hydrogen bound to vacancies is released. Single and multiple occupancy of hydrogen atoms at monovacancies is put forward as the reason for the two recovery stages between 280 and 400 K. A binding energy of 0.53±0.03 eV is found for a hydrogen atom trapped at a monovacancy. The results are in excellent agreement with recent ion-beam-analysis results and also with theoretical estimates.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Publication date1987
Volume35
Issue11
Pages5524-5528
ISSN0163-1829
DOIs
StatePublished

Bibliographical note

Copyright (1987) by the American Physical Society.

CitationsWeb of Science® Times Cited: 25
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 3614670