Defect distribution and reliability assessment of wind turbine blades - DTU Orbit
(22/12/2018)

Defect distribution and reliability assessment of wind turbine blades
In this paper, two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model
assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the
defects occur in clusters of different size, based on the assumption that one error in the production process tends to
trigger several defects. For both models, additional information, such as number, type, and size of the defects, is included
as stochastic variables. In a numerical example, the reliability is estimated for a generic wind turbine blade model both
with and without defects in terms of delaminations. The reliability of the blade decreases when defects are included.
However, the distribution of the defects influences how much the reliability is decreased. It is also shown how non-
destructive inspection (NDI) after production can be used to update the reliability for the wind turbine blade using Bayesian
statistics.

General information
State: Published
Organisations: Wind Turbines, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Aalborg University
Contributors: Stensgaard Toft, H., Branner, K., Berring, P., Sørensen, J. D.
Pages: 171-180
Publication date: 2011
Peer-reviewed: Yes

Publication Information
Journal: Engineering Structures
Volume: 33
Issue number: 1
ISSN (Print): 0141-0296
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.32 SJR 1.69 SNIP 2.165
Web of Science (2017): Impact factor 2.755
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.93 SJR 1.547 SNIP 2.037
Web of Science (2016): Impact factor 2.258
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.59 SJR 1.631 SNIP 2.15
Web of Science (2015): Impact factor 1.893
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.4 SJR 1.701 SNIP 2.488
Web of Science (2014): Impact factor 1.838
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.69 SJR 1.967 SNIP 2.799
Web of Science (2013): Impact factor 1.767
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.23 SJR 1.786 SNIP 2.608
Web of Science (2012): Impact factor 1.713
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.26 SJR 1.644 SNIP 2.747
Web of Science (2011): Impact factor 1.351