DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation - DTU Orbit (19/11/2018)

DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation

The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally "dumb" devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering, Örebro University, University of Rome La Sapienza
Contributors: De Donno, M., Dragoni, N., Giaretta, A., Spognardi, A.
Number of pages: 30
Pages: 1-30
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Security and Communication Networks
Volume: 2018
ISSN (Print): 1939-0114
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.36 SJR 0.285 SNIP 0.71
Web of Science (2017): Impact factor 0.904
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.43 SJR 0.304 SNIP 0.816
Web of Science (2016): Impact factor 1.067
Scopus rating (2015): CiteScore 1.09 SJR 0.278 SNIP 0.799
Web of Science (2015): Impact factor 0.806
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 0.93 SJR 0.285 SNIP 0.866
Web of Science (2014): Impact factor 0.72
Scopus rating (2013): CiteScore 0.71 SJR 0.233 SNIP 0.604
Web of Science (2013): Impact factor 0.433
Scopus rating (2012): CiteScore 0.67 SJR 0.187 SNIP 0.646
Web of Science (2012): Impact factor 0.311
Scopus rating (2011): CiteScore 0.86 SJR 0.223 SNIP 1.052
Web of Science (2011): Impact factor 0.414
Scopus rating (2010): SJR 0.178 SNIP 0.485
Web of Science (2010): Impact factor 0.356
Original language: English
Electronic versions:
7178164.pdf
DOIs:
10.1155/2018/7178164
Source: FindIt
Source-ID: 2396578271
Research output: Research - peer-review › Journal article – Annual report year: 2018