The first brief description is given of a project aimed at searching for the neural correlates of consciousness through computer simulation. The underlying model is based on the known circuitry of the mammalian nervous system, the neuronal groups of which are approximated as binary composite units. The simulated nervous system includes just two senses - hearing and touch - and it drives a set of muscles that serve vocalisation, feeding and bladder control. These functions were chosen because of their relevance to the earliest stages of human life, and the simulation has been given the name CyberChild. The system pain receptors respond to a sufficiently low milk level in the stomach, if there is simultaneously a low level of blood sugar and also to a full bladder and an unchanged diaper. It is believed that it may be possible to infer the presence of consciousness in the simulation through observations of CyberChild behaviour and from the monitoring of its ability to ontogenetically acquire novel reflexes. The author has suggested that this ability is the crucial evolutionary advantage of possessing consciousness. The project is still in its very early stages, and although no suggestion of consciousness has yet emerged, there appears to be no fundamental reason why consciousness could not ultimately develop and be observed.

General information
State: Published
Organisations: Department of Physics
Contributors: Cotterill, R. M. J.
Pages: 31-45
Publication date: 2003
Peer-reviewed: Yes

Publication information
Journal: Journal of consciousness studies
Volume: 10
Issue number: 4-5
ISSN (Print): 1355-8250
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.62 SJR 0.312 SNIP 0.463
Web of Science (2017): Impact factor 0.725
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.61 SJR 0.39 SNIP 0.43
Web of Science (2016): Impact factor 0.681
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.6 SJR 0.242 SNIP 0.599
Web of Science (2015): Impact factor 0.445
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.54 SJR 0.332 SNIP 0.75
Web of Science (2014): Impact factor 0.578
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 0.54 SJR 0.263 SNIP 0.878
Web of Science (2013): Impact factor 0.541
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 0.69 SJR 0.393 SNIP 0.877
Web of Science (2012): Impact factor 0.477
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 0.63 SJR 0.372 SNIP 0.812
Web of Science (2011): Impact factor 0.774
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.442 SNIP 0.679
Web of Science (2010): Impact factor 0.616
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.316 SNIP 0.659
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.27 SNIP 1.203
Scopus rating (2007): SJR 0.326 SNIP 0.806
Scopus rating (2006): SJR 0.47 SNIP 1.16
Scopus rating (2005): SJR 0.485 SNIP 0.998
Scopus rating (2004): SJR 0.346 SNIP 0.891
Scopus rating (2003): SJR 0.318 SNIP 1.032
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.41 SNIP 0.842
Scopus rating (2001): SJR 0.289 SNIP 0.663
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.238 SNIP 1.023
Scopus rating (1999): SJR 0.357 SNIP 1.403
Original language: English
Source: orbit
Source-ID: 22502
Research output: Research - peer-review › Journal article – Annual report year: 2003