Cut Locus Construction using Deformable Simplicial Complexes

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2011

NullPointerException

View graph of relations

In this paper we present a method for appproximating cut loci for a given point p on Riemannian 2D manifolds, closely related to the notion of Voronoi diagrams. Our method finds the cut locus by advecting a front of points equally distant from p along the geodesics originating at p and finding the lines of self-intersections of the front in the parametric space. This becomes possible by using the deformable simplicial complexes (DSC, [1]) method for deformable interface tracking. DSC provide a simple collision detection mechanism, allows for interface topology control, and does not require the domain to have disk topology. We test our method for tori of revolution and compare our results to the benchmark ones from [2]. The method, however, is generic and can be easily adapted to construct cut loci for other manifolds of genera other than 1.
Original languageEnglish
Title2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)
PublisherIEEE
Publication date2011
Pages134-141
ISBN (print)978-1-4577-1026-1
DOIs
StatePublished

Conference

Conference8th International Symposium on Voronoi Diagrams in Science and Engineering
Number8
CountryChina
CityQingdao
Period28/06/1130/06/11
Internet addresshttp://informatik.uni-trier.de/~ley/db/conf/isvd/isvd2011.html
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5733480