Curvilinear 3-D Imaging Using Row–Column Addressed 2-D Arrays with a Diverging Lens: Phantom Study - DTU Orbit (14/12/2018)

Curvilinear 3-D Imaging Using Row–Column Addressed 2-D Arrays with a Diverging Lens: Phantom Study
A double-curved diverging lens over the flat row–column-addressed (RCA) 2-D array can extend its inherent rectilinear 3-D imaging field-of-view (FOV) to a curvilinear volume region, which is necessary for applications such as abdominal and cardiac imaging. Two concave lenses with radii of 12.7mm and 25.4mm were manufactured using RTV684 silicone. The diverging properties of the lenses were evaluated based on simulations and measurements on several phantoms. The measured FOV for both lenses in contact with tissue mimicking phantom were less than 15% different from the theoretical predictions, i.e., a curvilinear FOV of 32°×32° and 24°×24° for the 12.7mm and 25.4mm radius lenses. A synthetic aperture imaging sequence with single element transmissions was designed for imaging down to 140mm at a volume rate of 88 Hz. The performance was evaluated in terms of signal-to-noise ratio (SNR), FOV, and full-width-at-half-maximum (FWHM) of a focused beam. The penetration depths in a tissue mimicking phantom with 0.5 dB/(cm MHz) attenuation were 100mm and 125mm for the lenses with radii of 12.7mm and 25.4 mm. The azimuth, elevation, and radial FWHM at 43mm depth were (5.8, 5.8, 1)λ and (6, 6, 1)λ. The results of this study confirm that the proposed lens approach is an effective method for increasing the FOV, when imaging with RCA 2-D arrays.

General information
State: Published
Organisations: Department of Electrical Engineering, Biomedical Engineering, Department of Micro- and Nanotechnology, MEMS-AppliedSensors, Center for Fast Ultrasound Imaging, Sound Technology, Inc., BK Medical ApS
Contributors: Bouzari, H., Engholm, M., Beers, C., Stuart, M. B., Nikolov, S. I., Thomsen, E. V., Jensen, J. A.
Pages: 1182-1192
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Volume: 65
Issue number: 7
ISSN (Print): 0885-3010
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.94 SJR 1.183 SNIP 1.447
Web of Science (2017): Impact factor 2.704
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.73 SJR 0.986 SNIP 1.402
Web of Science (2016): Impact factor 2.743
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.43 SJR 0.814 SNIP 1.494
Web of Science (2015): Impact factor 2.287
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.18 SJR 1.086 SNIP 1.627
Web of Science (2014): Impact factor 1.512
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.18 SJR 0.872 SNIP 1.496
Web of Science (2013): Impact factor 1.503
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.87 SJR 0.802 SNIP 1.479
Web of Science (2012): Impact factor 1.822
ISI indexed (2012): ISI indexed yes