Current-Induced Forces and Hot Spots in Biased Nanojunctions

We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Theoretical Nanoelectronics, Center for Nanostructured Graphene, National University of Singapore, University of Copenhagen
Authors: Lu, J. T. (Intern), Christensen, R. B. (Intern), Wang, J. (Ekstern), Hedegård, P. (Ekstern), Brandbyge, M. (Intern)
Number of pages: 5
Pages: 096801
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Physical Review Letters
Volume: 114
Issue number: 9
ISSN (Print): 0031-9007
Ratings:
BFI (2017): BFI-level 2
BFI (2016): BFI-level 2
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 3.731 SNIP 1.995
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 5.147 SNIP 2.618
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 5.703 SNIP 2.843
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 6.373 SNIP 2.887
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 6.393 SNIP 2.898
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 6.679 SNIP 2.776
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 6.304 SNIP 2.953
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 6.277 SNIP 2.832
Scopus rating (2006): SJR 5.641 SNIP 2.81
Scopus rating (2005): SJR 5.371 SNIP 2.956
Scopus rating (2004): SJR 5.381 SNIP 3.034
Scopus rating (2003): SJR 5.431 SNIP 2.991
Scopus rating (2002): SJR 5.509 SNIP 3.115
Scopus rating (2001): SJR 5.267 SNIP 3.073
Scopus rating (2000): SJR 5.901 SNIP 3.165
Scopus rating (1999): SJR 6.273 SNIP 2.974
Original language: English
Electronic versions:
PhysRevLett.114.096801.pdf
DOIs: