Current issues in dietary acrylamide: formation, mitigation and risk assessment - DTU Orbit (08/04/2018)

Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods. © 2013 Society of Chemical Industry.
Scopus rating (2010): SJR 0.775 SNIP 0.894
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.86 SNIP 1.054
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.751 SNIP 0.838
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.732 SNIP 1.14
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.704 SNIP 0.963
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.565 SNIP 0.89
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.621 SNIP 0.914
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.797 SNIP 1.142
Scopus rating (2002): SJR 0.864 SNIP 1.166
Scopus rating (2001): SJR 0.795 SNIP 0.976
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.61 SNIP 1.063
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.841 SNIP 1.335
Original language: English
DOIs:
10.1002/jsfa.6349
Source: dtu
Source-ID: u::9457
Publication: Research - peer-review › Journal article – Annual report year: 2013