Current functional theory for multi-electron configuration

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application of the method to ZnO and H2O to calculate the occupation probabilities of the orbitals lead to the results that compare favorably with those obtained from DFT. Furthermore, evolution equations for electrons in both atoms and molecules can be derived. Applications to specific examples of small molecules (being metallo-oxides and water) are mentioned at the end.
Original languageEnglish
JournalTheoretical Chemistry Accounts
Publication date2010
Volume125
Journal number3-6
Pages555-568
ISSN1432-881X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 0

Keywords

  • Current DFT, Density functional theory, Continuity equations
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4389909