Cumulative dietary exposure of the population of Denmark to pesticides. - DTU Orbit
(01/02/2019)

Cumulative dietary exposure of the population of Denmark to pesticides.
We used the Hazard Index (HI) method to carry out a cumulative risk assessment after chronic dietary exposure to all monitored pesticides in fruit, vegetables and cereals for various consumer groups in Denmark. Residue data for all the pesticides were obtained from the Danish monitoring programme during the period 2004-2011. Food consumption data were obtained from DANSDA (the Danish National Survey of Diet and physical Activity) for the period 2005-2008. The calculations were made using three different models to cope with residues below the limit of reporting (LOR). We concluded that a model that included processing factors and set non-detects to ½ LOR, but limited the correction (Model 3), gave the most realistic exposure estimate. With Model 3 the HI was calculated to be 0.44 for children and 0.18 for adults, indicating that there is no risk of adverse health effects following chronic cumulative exposure to the pesticides found in fruit, vegetables and cereals on the Danish market. The HI was below 1 even for consumers who eat more than 550 g of fruit and vegetables per day, corresponding to 1/3 of the population. Choosing Danish-produced commodities whenever possible could reduce the HI by a factor of 2.

General information
State: Published
Organisations: National Food Institute, Division of Risk Assessment and Nutrition, Research group for Analytical Food Chemistry
Contributors: Jensen, B. H., Petersen, A., Nielsen, E., Christensen, T., Poulsen, M. E., Andersen, J. H.
Pages: 300-307
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Food and Chemical Toxicology
Volume: 83
ISSN (Print): 0278-6915
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.99 SJR 1.144 SNIP 1.427
Web of Science (2017): Impact factor 3.977
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.96 SJR 1.351 SNIP 1.58
Web of Science (2016): Impact factor 3.778
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.44 SJR 1.202 SNIP 1.415
Web of Science (2015): Impact factor 3.584
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.12 SJR 1.038 SNIP 1.369
Web of Science (2014): Impact factor 2.895
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.26 SJR 1.02 SNIP 1.506
Web of Science (2013): Impact factor 2.61
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.52 SJR 1.126 SNIP 1.748
Web of Science (2012): Impact factor 3.01
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.36 SJR 1.124 SNIP 1.58
Web of Science (2011): Impact factor 2.999
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.93 SNIP 1.221
Web of Science (2010): Impact factor 2.602
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.833 SNIP 1.056
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.771 SNIP 1.163
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.803 SNIP 1.441
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.884 SNIP 1.379
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.897 SNIP 1.205
Scopus rating (2004): SJR 0.877 SNIP 1.196
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.688 SNIP 1.038
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.608 SNIP 1.125
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.573 SNIP 0.985
Scopus rating (2000): SJR 0.506 SNIP 0.889
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.493 SNIP 0.963
Original language: English
Keywords: Pesticides residues, Cumulative chronic exposure assessment, Hazard Index method, Handling of left-censored data
DOI: 10.1016/j.fct.2015.07.002
Source: PublicationPreSubmission
Source-ID: 114718861
Research output: Research - peer-review › Journal article – Annual report year: 2015