Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

Cryopreservation of MHC multimers serves as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability.

General information
State: Published
Organisations: University Hospital Herlev, Immatics Biotechnologies GmbH, Johannes Gutenberg-Universität Mainz, Leiden University, University of Tübingen
Number of pages: 12
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Cytometry. Part A
ISSN (Print): 1552-4922
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 2.64 SJR 1.557 SNIP 0.908
Web of Science (2017): Impact factor 3.26
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.48 SJR 1.423 SNIP 0.898
Web of Science (2016): Impact factor 3.222
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.32 SJR 1.652 SNIP 0.988
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 2.29 SJR 1.55 SNIP 1.005
Web of Science (2014): Impact factor 2.928
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 2.83 SJR 1.564 SNIP 1.19
Web of Science (2013): Impact factor 3.066
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.8 SJR 1.402 SNIP 1.204
Web of Science (2012): Impact factor 3.711
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 3.09 SJR 1.62 SNIP 1.151
Web of Science (2011): Impact factor 3.729
ISI indexed (2011): ISI indexed yes
Scopus rating (2010): SJR 1.383 SNIP 1.083
Web of Science (2010): Impact factor 3.753
Scopus rating (2009): SJR 1.074 SNIP 0.852
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 1.109 SNIP 1.001