Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping

Snakebite antivenom is a 120 years old invention based on polyclonal mixtures of antibodies purified from the blood of hyper-immunized animals. Knowledge on antibody recognition sites (epitopes) on snake venom proteins is limited, but may be used to provide molecular level explanations for antivenom cross-reactivity. In turn, this may help guide antivenom development by elucidating immunological biases in existing antivenoms. In this study, we have identified and characterized linear elements of B-cell epitopes from 870 pit viper venom protein sequences by employing a high-throughput methodology based on custom designed high-density peptide microarrays. By combining data on antibody-peptide interactions with multiple sequence alignments of homologous toxin sequences and protein modelling, we have determined linear elements of antibody binding sites for snake venom metalloproteases (SVMPs), phospholipases A2s (PLA2s), and snake venom serine proteases (SVSPs). The studied antivenom antibodies were found to recognize linear elements in each of the three enzymatic toxin families. In contrast to a similar study of elapid (non-enzymatic) neurotoxins, these enzymatic toxins were generally not recognized at the catalytic active site responsible for toxicity, but instead at other sites, of which some are known for allosteric inhibition or for interaction with the tissue target. Antibody recognition was found to be preserved for several minor variations in the protein sequences, although the antibody-toxin interactions could often be eliminated completely by substitution of a single residue. This finding is likely to have large implications for the cross-reactivity of the antivenom and indicate that multiple different antibodies are likely to be needed for targeting an entire group of toxins in these recognized sites.

General information
State: Published
Organisations: Network Engineering of Eukaryotic Cell factories, Department of Bio and Health Informatics, Genomic Epidemiology, Department of Biotechnology and Biomedicine, Integrative Systems Biology, University of Costa Rica
Number of pages: 23
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: P L o S Neglected Tropical Diseases (Online)
Volume: 11
Issue number: 7
Article number: e0005768
ISSN (Print): 1935-2735
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.36
Web of Science (2017): Impact factor 4.367
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.97
Web of Science (2016): Impact factor 3.834
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.09
Web of Science (2015): Impact factor 3.948
Scopus rating (2014): CiteScore 4.61
Web of Science (2014): Impact factor 4.446
Scopus rating (2013): CiteScore 4.72
Web of Science (2013): Impact factor 4.489
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 4.75
Web of Science (2012): Impact factor 4.569
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 4.64