Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products - DTU Orbit (07/03/2019)

Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products

Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three-dimensional structure of yogurt. Yogurts treated with MTGase showed decreased syneresis, increased water-holding capacity and viscosity, homogeneous structure, desired texture, and physicochemical high stability during storage time. The utilization of MTGase does not affect negatively the sensory attributes of yogurt. Inclusion of MTGase into acidified yogurt drinks reduces the serum separation with an improved viscoelasticity. This multi-functional enzyme also protects the viable starter and probiotic cells in yogurts. Further studies are required to assess the viability of probiotics in yogurts protected using MTGase-mediated microcapsules.

General information
State: Published
Organisations: National Food Institute, Research group for Nano-Bio Science, Islamic Azad University
Contributors: Gharibzahedi, S. M. T., Chronakis, I. S.
Number of pages: 13
Pages: 620-632
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Food Chemistry
Volume: 245
ISSN (Print): 0308-8146
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.19 SJR 1.793 SNIP 2.109
Web of Science (2017): Impact factor 4.946
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.85 SJR 1.731 SNIP 2.095
Web of Science (2016): Impact factor 4.529
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.31 SJR 1.582 SNIP 1.946
Web of Science (2015): Impact factor 4.052
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.92 SJR 1.557 SNIP 2.01
Web of Science (2014): Impact factor 3.391
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.87 SJR 1.554 SNIP 2.056
Web of Science (2013): Impact factor 3.259
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.98 SJR 1.762 SNIP 2.342
Web of Science (2012): Impact factor 3.334
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.17 SJR 1.911 SNIP 2.383
Web of Science (2011): Impact factor 3.655
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.981 SNIP 2.253
Web of Science (2010): Impact factor 3.458
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.789 SNIP 2.023
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.47 SNIP 1.706
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.475 SNIP 2.087
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.028 SNIP 1.526
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.077 SNIP 1.438
Scopus rating (2003): SJR 0.876 SNIP 1.248
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.966 SNIP 1.235
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.785 SNIP 0.975
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.588 SNIP 0.961
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.654 SNIP 0.921

Original language: English
Keywords: Chemical Reactions, Organic Compounds, Food Products, Materials Science, Enzymatic cross-linking, Microbial survivability, Microstructure, Probiotic microencapsulation, Transglutaminase, Yogurt, Beverages, Crosslinking, Proteins, Microbial transglutaminase, Microbial transglutaminase (mTGase), Probiotics, Quality characteristic, Three-dimensional structure, Transglutaminases, Dairy products

DOI: 10.1016/j.foodchem.2017.10.138
Source: FindIt
Source-ID: 2392594124
Research output: Research - peer-review › Journal article – Annual report year: 2018