Critical review on biofilm methods

Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.

General information
State: Published
Organisations: Infection Microbiology, Department of Biotechnology and Biomedicine, Department of Systems Biology, University of Minho, University of Porto, Universite Paris-Saclay, Ghent University, INRA Institut National de La Recherche Agronomique, Gabriele d'Annunzio University, Veterinary Research Institute, Slovak University of Agriculture in Nitra, University of Vigo, University of Copenhagen, Aarhus University, Agricultural University of Athens
Pages: 313-351
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Critical Reviews in Microbiology
Volume: 43
Issue number: 3
ISSN (Print): 1040-841X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.84 SJR 1.658 SNIP 1.535
Web of Science (2017): Impact factor 4.738
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.78 SJR 1.734 SNIP 1.766
Web of Science (2016): Impact factor 6.281
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.59 SJR 2.003 SNIP 1.884
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.99 SJR 1.801 SNIP 1.909
Web of Science (2014): Impact factor 6.02
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.5 SJR 2.156 SNIP 2.422
Web of Science (2013): Impact factor 6.087
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.81 SJR 1.595 SNIP 2.586
Web of Science (2012): Impact factor 5.065
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 6.65 SJR 1.962 SNIP 2.16