Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Standard

Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach. / Trueba, A.; García Lastra, Juan Maria; Garcia-Fernandez, P.; Aramburu, J.A.; Barriuso, M.T.; Moreno, M.

In: Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory, Vol. 115, No. 46, 2011, p. 13399-13406.

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Harvard

APA

CBE

MLA

Vancouver

Author

Trueba, A.; García Lastra, Juan Maria; Garcia-Fernandez, P.; Aramburu, J.A.; Barriuso, M.T.; Moreno, M. / Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach.

In: Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory, Vol. 115, No. 46, 2011, p. 13399-13406.

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Bibtex

@article{c3af2567bc2547b9944b9f9f0860b26b,
title = "Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach",
publisher = "American Chemical Society",
author = "A. Trueba and {García Lastra}, {Juan Maria} and P. Garcia-Fernandez and J.A. Aramburu and M.T. Barriuso and M. Moreno",
year = "2011",
doi = "10.1021/jp207249w",
volume = "115",
number = "46",
pages = "13399--13406",
journal = "Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory",
issn = "1089-5639",

}

RIS

TY - JOUR

T1 - Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach

A1 - Trueba,A.

A1 - García Lastra,Juan Maria

A1 - Garcia-Fernandez,P.

A1 - Aramburu,J.A.

A1 - Barriuso,M.T.

A1 - Moreno,M.

AU - Trueba,A.

AU - García Lastra,Juan Maria

AU - Garcia-Fernandez,P.

AU - Aramburu,J.A.

AU - Barriuso,M.T.

AU - Moreno,M.

PB - American Chemical Society

PY - 2011

Y1 - 2011

N2 - This work is aimed at clarifying the changes on optical spectra of Cr 3+ impurities due to either a host lattice variation or a hydrostatic pressure, which can hardly be understood by means of the usual Tanabe - Sugano (TS) approach assuming that the Racah parameter, B, grows when covalency decreases. For achieving this goal, the optical properties of Cr 3+-doped LiBaF3 and KMgF3 model systems have been explored by means of high level ab initio calculations on CrF 63- units subject to the electric field, ER(r), created by the rest of the lattice ions. These calculations, which reproduce available experimental data, indicate that the energy, E(2E), of the 2E(t2g3) → 4A 2(t2g3) emission transition is nearly independent of the host lattice. By contrast, the energy difference corresponding to 4A2(t2g3) → 4T1(t2g2eg1) and 4A2(t2g3) → 4T2(t2g2eg1) excitations, Δ(4T1; 4T2), is shown to increase on passing from the normal to the inverted perovskite host lattice despite the increase in covalency, a fact which cannot be accounted for through the usual TS model. Similarly, when the Cr3+ - F- distance, R, is reduced both Δ(4T1; 4T2) and the covalency are found to increase. By analyzing the limitations of the usual model, we found surprising results that are shown to arise from the deformation of both 3d(Cr) and ligand orbitals in the antibonding eg orbital, which has a σ character and is more extended than the π t2g orbital. By contrast, because of the higher stiffness of the t2g orbital, the dependence of E( 2E) with R basically follows the corresponding variation of covalency in that level. Bearing in mind the similarities of the optical properties displayed by Cr3+ impurities in oxides and fluorides, the present results can be useful for understanding experimental data on Cr 3+-based gemstones where the local symmetry is lower than cubic. © 2011 American Chemical Society.

AB - This work is aimed at clarifying the changes on optical spectra of Cr 3+ impurities due to either a host lattice variation or a hydrostatic pressure, which can hardly be understood by means of the usual Tanabe - Sugano (TS) approach assuming that the Racah parameter, B, grows when covalency decreases. For achieving this goal, the optical properties of Cr 3+-doped LiBaF3 and KMgF3 model systems have been explored by means of high level ab initio calculations on CrF 63- units subject to the electric field, ER(r), created by the rest of the lattice ions. These calculations, which reproduce available experimental data, indicate that the energy, E(2E), of the 2E(t2g3) → 4A 2(t2g3) emission transition is nearly independent of the host lattice. By contrast, the energy difference corresponding to 4A2(t2g3) → 4T1(t2g2eg1) and 4A2(t2g3) → 4T2(t2g2eg1) excitations, Δ(4T1; 4T2), is shown to increase on passing from the normal to the inverted perovskite host lattice despite the increase in covalency, a fact which cannot be accounted for through the usual TS model. Similarly, when the Cr3+ - F- distance, R, is reduced both Δ(4T1; 4T2) and the covalency are found to increase. By analyzing the limitations of the usual model, we found surprising results that are shown to arise from the deformation of both 3d(Cr) and ligand orbitals in the antibonding eg orbital, which has a σ character and is more extended than the π t2g orbital. By contrast, because of the higher stiffness of the t2g orbital, the dependence of E( 2E) with R basically follows the corresponding variation of covalency in that level. Bearing in mind the similarities of the optical properties displayed by Cr3+ impurities in oxides and fluorides, the present results can be useful for understanding experimental data on Cr 3+-based gemstones where the local symmetry is lower than cubic. © 2011 American Chemical Society.

U2 - 10.1021/jp207249w

DO - 10.1021/jp207249w

JO - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory

JF - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory

SN - 1089-5639

IS - 46

VL - 115

SP - 13399

EP - 13406

ER -