Broilers are an important reservoir for human Campylobacter infections, one of the leading causes of acute diarrheal disease in humans worldwide. Therefore, it is relevant to control Campylobacter on broiler farms. This study estimated the cost-effectiveness ratios of eight Campylobacter interventions on broiler farms in six European countries: Denmark, the Netherlands, Norway, Poland, Spain, and United Kingdom. The cost-effectiveness ratio of an intervention was the estimated costs of the intervention divided by the estimated public health benefits due to the intervention, and was expressed in euro per avoided disability-adjusted life year (DALY). Interventions were selected on the basis of a European risk factor study and other risk factor research. A deterministic simulation model was developed to estimate the cost-effectiveness ratio of each intervention, if it would be implemented on all broiler farms in a country where it isn't implemented yet and implementation is possible. The model considered differences between countries in number and size of broiler farms and established practices, in import, export and transit of live broilers, broiler meat and meat products, in effect of interventions on Campylobacter prevalence in broilers, in disease burden of Campylobacter related human illness, in national economic factors, such as interest rate and general cost levels, and in technical and economic farm performance. Across interventions, cost-effectiveness ratios were the lowest for Poland and Spain, and highest for Norway and Denmark. Across countries, applying designated tools for each farm house and building an anteroom with hygiene barrier in each farm house had the lowest cost-effectiveness ratios, whereas a ban on thinning (partial depopulation), slaughter at 35 days, replacing old houses by new houses, and applying drink nipples without cup had the highest. Applying fly screens in Denmark had an intermediate cost-effectiveness ratio. A maximum downtime between flocks of ten days had a negative cost-effectiveness ratio (i.e. revenue) in Poland, a low positive cost-effectiveness ratio in Spain and high positive cost-effectiveness ratios in Denmark, the Netherlands and United Kingdom. Estimated cost-effectiveness ratios of Campylobacter interventions on broiler farms differed substantially between the six countries, but the order of interventions in increasing cost-effectiveness ratio was generally similar across the countries.