Cosmic ray decreases affect atmospheric aerosols and clouds - DTU Orbit (11/12/2018)

Cosmic ray decreases affect atmospheric aerosols and clouds
Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International Satellite Cloud Climate Project (ISCCP). Parallel observations by the aerosol robotic network AERONET reveal falls in the relative abundance of fine aerosol particles which, in normal circumstances, could have evolved into cloud condensation nuclei. Thus a link between the sun, cosmic rays, aerosols, and liquid-water clouds appears to exist on a global scale.

General information
State: Published
Organisations: Solar System Physics, National Space Institute
Contributors: Svensmark, H., Bondo, T., Svensmark, J.
Pages: L15101
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Geophysical Research Letters
Volume: 36
ISSN (Print): 0094-8276
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 4.51 SJR 2.657 SNIP 1.429
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 4.35 SJR 2.819 SNIP 1.495
 Web of Science (2016): Impact factor 4.253
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 4.27 SJR 3.144 SNIP 1.496
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 4.26 SJR 3.135 SNIP 1.552
 Web of Science (2014): Impact factor 4.196
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 4.45 SJR 3.24 SNIP 1.728
 Web of Science (2013): Impact factor 4.456
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 3.82 SJR 3.122 SNIP 1.577
 Web of Science (2012): Impact factor 3.982
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 3.79 SJR 2.935 SNIP 1.556
 Web of Science (2011): Impact factor 3.792
 ISI indexed (2011): ISI indexed yes
 Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.934 SNIP 1.416
Web of Science (2010): Impact factor 3.505
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.742 SNIP 1.387
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.573 SNIP 1.325
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.361 SNIP 1.248
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.262 SNIP 1.299
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.239 SNIP 1.257
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.261 SNIP 1.348
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.906 SNIP 1.285
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.087 SNIP 1.4
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.403 SNIP 1.292
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.337 SNIP 1.313
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.353 SNIP 1.163
Original language: English
DOI:
10.1029/2009GL038429
Source: orbit
Source-ID: 247707
Research output: Research - peer-review › Journal article – Annual report year: 2009