Corticomuscular coherence in the acute and subacute phase after stroke - DTU Orbit
(12/11/2017)

Corticomuscular coherence in the acute and subacute phase after stroke

Objective Stroke is one of the leading causes of physical disability due to damage of the motor cortex or the corticospinal tract. In the present study we set out to investigate the role of adaptations in the corticospinal pathway for motor recovery during the subacute phase after stroke. Methods We examined 19 patients with clinically diagnosed stroke and 18 controls. The patients had unilateral mild to moderate weakness of the hand. Each patient attended two sessions at approximately 3 days (acute) and 38 days post stroke (subacute). Task-related changes in the communication between motor cortex and muscles were evaluated from coupling in the frequency domain between EEG and EMG during movement of the paretic hand. Results Corticomuscular coherence (CMC) and intermuscular coherence (IMC) were reduced in patients as compared to controls. Paretic hand motor performance improved within 4–6 weeks after stroke, but no change was observed in CMC or IMC. Conclusions CMC and IMC were reduced in patients in the early phase after stroke. However, changes in coherence do not appear to be an efficient marker for early recovery of hand function following stroke. Significance This is the first study to demonstrate sustained reduced coherence in acute and subacute stroke.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of Copenhagen
Authors: Larsen, L. H. (Ekstern), Zibrandtsen, I. C. (Ekstern), Wienecke, T. (Ekstern), Kjaer, T. W. (Ekstern), Christensen, M. S. (Intern), Nielsen, J. B. (Ekstern), Langberg, H. (Ekstern)
Pages: 2217-2226
Publication date: 1 Nov 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Clinical Neurophysiology
Volume: 128
Issue number: 11
ISSN (Print): 1388-2457
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.81 SJR 2.514 SNIP 2.033
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.395 SNIP 1.505 CiteScore 2.72
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.572 SNIP 0.437 CiteScore 2.61
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.122 SNIP 1.468 CiteScore 3
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.168 SNIP 0.302 CiteScore 3.03
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.133 SNIP 0.366 CiteScore 3.35
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.102 SNIP 0.011
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.307 SNIP 0.352