Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe - DTU Orbit (18/02/2019)

Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AISI 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion is at an increased level at this temperature, most likely because of favorable conditions for molten salt film condensation.

General information

State: Published
Organisations: Department of Chemistry, Energy and Materials, Department of Chemistry
Contributors: Cappeln, F. V., Bjerrum, N., Petrushina, I.
Pages: 588-593
Publication date: Aug 2007
Peer-reviewed: Yes

Publication information

Journal: Materials and Corrosion
Volume: 58
Issue number: 8
ISSN (Print): 0947-5117
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.23 SJR 0.47 SNIP 0.768
Web of Science (2017): Impact factor 1.259
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.21 SJR 0.545 SNIP 0.784
Web of Science (2016): Impact factor 1.26
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.53 SJR 0.674 SNIP 1.049
Web of Science (2015): Impact factor 1.45
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.36 SJR 0.747 SNIP 1.206
Web of Science (2014): Impact factor 1.373
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.44 SJR 0.825 SNIP 1.376
Web of Science (2013): Impact factor 1.508
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.25 SJR 0.669 SNIP 1.129
Web of Science (2012): Impact factor 1.208
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.13 SJR 0.603 SNIP 1.112