Copepods use chemical trails to find sinking marine snow aggregates

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

Copepods are major consumers of sinking marine particles and hence reduce the efficiency of the biological carbon pump. Their high abundance on marine snow suggests that they can detect sinking particles remotely. By means of laboratory observations, we show that the copepod Temora longicornis can detect chemical trails originating from sinking marine snow particles (appendicularian houses). The chemical cue was detected by copepods from a distance of >25 particle radii, with the probability of detection decreasing with distance. The behavior of T. longicornis following the trail resembled the behavior of males tracking pheromone trails, although with a lower tracking velocity. Upon finding a house, the copepod would attach for a short period (10–30 s) and feed intensively. Due to short residence times, daily feeding rates were moderate. Our results demonstrate that even T. longicornis, a species usually considered a microparticle feeder, is able to detect and feed on marine snow aggregates. If similar behaviors are displayed by the more dedicated aggregate-feeding copepods, a topic that remains unexplored, the effect of copepods on vertical flux attenuation may be significant
Original languageEnglish
JournalLimnology and Oceanography
Publication date2013
Volume58
Issue1
Pages185-192
ISSN0024-3590
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 4
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 18271210